ECE
ECE - Differential Equation

Home
Contact
Mathematics
=> Algebra
=> Plane Geometry
=> Plane Trigonometry
=> Spherical Trigonometry
=> Analytic Geometry
=> Solid Geometry
=> Differential Calculus
=> Integral Calculus
=> Differential Equation
=> Engineering Probability and Statistics
=> Advanced Engineering Mathematics
=> Applied Math
Engineering Sciences
Electronics Engineering
Communication Engineering
Programming
Computer Networking
Computer Principle
Troubleshooting
Electronic Engineering
ECE Board Syllabi


DarkMagician637_ECE

 


Differential equation


A differential equation is a mathematical equation for an unknown function of one or several variables that relates the values of the function itself and its derivatives of various orders. Differential equations play a prominent role in engineering, physics, economics, and other disciplines.

Differential equations arise in many areas of science and technology, specifically whenever a deterministic relation involving some continuously varying quantities (modeled by functions) and their rates of change in space and/or time (expressed as derivatives) is known or postulated. This is illustrated in classical mechanics, where the motion of a body is described by its position and velocity as the time varies. Newton's laws allow one to relate the position, velocity, acceleration and various forces acting on the body and state this relation as a differential equation for the unknown position of the body as a function of time. In some cases, this differential equation (called an equation of motion) may be solved explicitly.

An example of modelling a real world problem using differential equations is determination of the velocity of a ball falling through the air, considering only gravity and air resistance. The ball's acceleration towards the ground is the acceleration due to gravity minus the deceleration due to air resistance. Gravity is constant but air resistance may be modelled as proportional to the ball's velocity. This means the ball's acceleration, which is the derivative of its velocity, depends on the velocity. Finding the velocity as a function of time involves solving a differential equation.

Differential equations are mathematically studied from several different perspectives, mostly concerned with their solutions—the set of functions that satisfy the equation. Only the simplest differential equations admit solutions given by explicit formulas; however, some properties of solutions of a given differential equation may be determined without finding their exact form. If a self-contained formula for the solution is not available, the solution may be numerically approximated using computers. The theory of dynamical systems puts emphasis on qualitative analysis of systems described by differential equations, while many numerical methods have been developed to determine solutions with a given degree of accuracy.

 TUTORIALS:



ELECTRONIC AND COMMUNICATION ENGINEERING

is an engineering discipline which uses the scientific knowledge of the behavior and effects of electrons to develop components, devices, systems, or equipment (as in electron tubes, transistors, integrated circuits, and printed circuit boards) that uses electricity as part of its driving force. Both terms denote a broad engineering field that encompasses many sub fields including those that deal with power, instrumentation engineering, telecommunications, semiconductor circuit design, and many others.

- http://en.wikipedia.org/wiki/Electronic_engineering

This website was created for free with Own-Free-Website.com. Would you also like to have your own website?
Sign up for free